Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrent Embedding Aggregation Network for Video Face Recognition (1904.12019v2)

Published 26 Apr 2019 in cs.CV

Abstract: Recurrent networks have been successful in analyzing temporal data and have been widely used for video analysis. However, for video face recognition, where the base CNNs trained on large-scale data already provide discriminative features, using Long Short-Term Memory (LSTM), a popular recurrent network, for feature learning could lead to overfitting and degrade the performance instead. We propose a Recurrent Embedding Aggregation Network (REAN) for set to set face recognition. Compared with LSTM, REAN is robust against overfitting because it only learns how to aggregate the pre-trained embeddings rather than learning representations from scratch. Compared with quality-aware aggregation methods, REAN can take advantage of the context information to circumvent the noise introduced by redundant video frames. Empirical results on three public domain video face recognition datasets, IJB-S, YTF, and PaSC show that the proposed REAN significantly outperforms naive CNN-LSTM structure and quality-aware aggregation methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.