Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Local Variational Iteration Method and Related Algorithm for Nonlinear Science and Engineering (1904.11021v1)

Published 22 Apr 2019 in cs.NA and physics.comp-ph

Abstract: A very simple and efficient local variational iteration method for solving problems of nonlinear science is proposed in this paper. The analytical iteration formula of this method is derived first using a general form of first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation method. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian in nonlinear problems. Apart from the simple yet efficient iteration formula, another extraordinary feature of LVIM is that in each local domain, all the collocation nodes participate in the calculation simultaneously, thus each local domain can be regarded as one node in calculation through GPU acceleration and parallel processing. For illustration, the proposed algorithm of LVIM is applied to various nonlinear problems including Blasius equations in fluid mechanics, buckled bar equations in solid mechanics, the Chandrasekhar equation in astrophysics, the low-Earth-orbit equation in orbital mechanics, etc. Using the built-in highly optimized ode45 function of MATLAB as a comparison, it is found that the LVIM is not only very accurate, but also much faster by an order of magnitude than ode45 in all the numerical examples, especially when the nonlinear terms are very complicated and difficult to evaluate.

Citations (2)

Summary

We haven't generated a summary for this paper yet.