Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Cleaning for Accurate, Fair, and Robust Models: A Big Data - AI Integration Approach (1904.10761v1)

Published 22 Apr 2019 in cs.DB and cs.LG

Abstract: The wide use of machine learning is fundamentally changing the software development paradigm (a.k.a. Software 2.0) where data becomes a first-class citizen, on par with code. As machine learning is used in sensitive applications, it becomes imperative that the trained model is accurate, fair, and robust to attacks. While many techniques have been proposed to improve the model training process (in-processing approach) or the trained model itself (post-processing), we argue that the most effective method is to clean the root cause of error: the data the model is trained on (pre-processing). Historically, there are at least three research communities that have been separately studying this problem: data management, machine learning (model fairness), and security. Although a significant amount of research has been done by each community, ultimately the same datasets must be preprocessed, and there is little understanding how the techniques relate to each other and can possibly be integrated. We contend that it is time to extend the notion of data cleaning for modern machine learning needs. We identify dependencies among the data preprocessing techniques and propose MLClean, a unified data cleaning framework that integrates the techniques and helps train accurate and fair models. This work is part of a broader trend of Big data -- AI integration.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ki Hyun Tae (6 papers)
  2. Yuji Roh (11 papers)
  3. Young Hun Oh (1 paper)
  4. Hyunsu Kim (27 papers)
  5. Steven Euijong Whang (27 papers)
Citations (65)