Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Few-Shot User-Specific Gaze Adaptation via Gaze Redirection Synthesis (1904.10638v1)

Published 24 Apr 2019 in cs.CV

Abstract: As an indicator of human attention gaze is a subtle behavioral cue which can be exploited in many applications. However, inferring 3D gaze direction is challenging even for deep neural networks given the lack of large amount of data (groundtruthing gaze is expensive and existing datasets use different setups) and the inherent presence of gaze biases due to person-specific difference. In this work, we address the problem of person-specific gaze model adaptation from only a few reference training samples. The main and novel idea is to improve gaze adaptation by generating additional training samples through the synthesis of gaze-redirected eye images from existing reference samples. In doing so, our contributions are threefold: (i) we design our gaze redirection framework from synthetic data, allowing us to benefit from aligned training sample pairs to predict accurate inverse mapping fields; (ii) we proposed a self-supervised approach for domain adaptation; (iii) we exploit the gaze redirection to improve the performance of person-specific gaze estimation. Extensive experiments on two public datasets demonstrate the validity of our gaze retargeting and gaze estimation framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yu Yu (88 papers)
  2. Gang Liu (177 papers)
  3. Jean-Marc Odobez (24 papers)
Citations (101)

Summary

We haven't generated a summary for this paper yet.