Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deconstructing the Filter Bubble: User Decision-Making and Recommender Systems (1904.10527v3)

Published 23 Apr 2019 in cs.CY and cs.IR

Abstract: We study a model of user decision-making in the context of recommender systems via numerical simulation. Our model provides an explanation for the findings of Nguyen, et. al (2014), where, in environments where recommender systems are typically deployed, users consume increasingly similar items over time even without recommendation. We find that recommendation alleviates these natural filter-bubble effects, but that it also leads to an increase in homogeneity across users, resulting in a trade-off between homogenizing across-user consumption and diversifying within-user consumption. Finally, we discuss how our model highlights the importance of collecting data on user beliefs and their evolution over time both to design better recommendations and to further understand their impact.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guy Aridor (5 papers)
  2. Shan Sikdar (1 paper)
  3. Duarte Goncalves (3 papers)