Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generated Loss, Augmented Training, and Multiscale VAE (1904.10446v1)

Published 23 Apr 2019 in cs.LG and stat.ML

Abstract: The variational autoencoder (VAE) framework remains a popular option for training unsupervised generative models, especially for discrete data where generative adversarial networks (GANs) require workaround to create gradient for the generator. In our work modeling US postal addresses, we show that our discrete VAE with tree recursive architecture demonstrates limited capability of capturing field correlations within structured data, even after overcoming the challenge of posterior collapse with scheduled sampling and tuning of the KL-divergence weight $\beta$. Worse, VAE seems to have difficulty mapping its generated samples to the latent space, as their VAE loss lags behind or even increases during the training process. Motivated by this observation, we show that augmenting training data with generated variants (augmented training) and training a VAE with multiple values of $\beta$ simultaneously (multiscale VAE) both improve the generation quality of VAE. Despite their differences in motivation and emphasis, we show that augmented training and multiscale VAE are actually connected and have similar effects on the model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jason Chou (6 papers)
  2. Gautam Hathi (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.