The role of potential, Morawetz estimate and spacetime bound for quasilinear Schrödinger equations (1904.10342v1)
Abstract: In this paper, we deal with the following Cauchy problem \begin{equation*} \left{ \begin{array}{lll} iu_t = \Delta u + 2uh'(|u|2)\Delta h(|u|2) + V(x)u,\ x\in \mathbb{R}N,\ t>0\ u(x,0) = u_0(x), \quad x \in \mathbb{R}N. \end{array}\right. \end{equation*} Here $h(s)$ and $V(x)$ are some real functions. We take the potential $V(x)\in Lq(\mathbb{R}N)+L{\infty}(\mathbb{R}N)$ as criterion of the blowup and global existence of the solution to (1.1). In some cases, we can classify it in the following sense: If $V(x)\in S(I)$, then the solution of (1.1) is always global existence for any $u_0$ satisfying $0<E(u_0)<+\infty$; If $V(x)\in S(II)$, then the solution of (1.1) may blow up for some initial data $u_0$. Here $$ S(I)=\cup_{q>q_c}[Lq(\mathbb{R}N)+L{\infty}(\mathbb{R}N)],\quad S(II)=\left{\cup_{q<q_c}[Lq(\mathbb{R}N)+L{\infty}(\mathbb{R}N)]\right}\setminus S(I).$$ Under certain assumptions, we also establish Morawetz estimates and spacetime bounds for the global solution, for example, \begin{align*} &\int_0{+\infty} \int_{\mathbb{R}N }\frac{[|\nabla h(|u|2)|2 + |V(x)||u|2]}{(|x|+t){\lambda}}dxdt\leq C,\ & |u|{L{\bar{q}}_t (\mathbb{R}) L{\bar{r}}_x(\mathbb{R}N)} = \left(\int_0{+\infty} \left(\int{\mathbb{R}N}|u|{\bar{r}} dx\right){\frac{\bar{q}}{\bar{r}}} dt\right){\frac{1}{\bar{q}}} \leq C. \end{align*}