Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential modeling of Sessions using Recurrent Neural Networks for Skip Prediction (1904.10273v1)

Published 23 Apr 2019 in cs.IR and cs.LG

Abstract: Recommender systems play an essential role in music streaming services, prominently in the form of personalized playlists. Exploring the user interactions within these listening sessions can be beneficial to understanding the user preferences in the context of a single session. In the 'Spotify Sequential Skip Prediction Challenge', WSDM, and Spotify are challenging people to understand the way users sequentially interact with music. We describe our solution approach in this paper and also state proposals for further improvements to the model. The proposed model initially generates a fixed vector representation of the session, and this additional information is incorporated into an Encoder-Decoder style architecture. This method achieved the seventh position in the competition, with a mean average accuracy of 0.604 on the test set. The solution code is available at https://github.com/sainathadapa/spotify-sequential-skip-prediction.

Citations (3)

Summary

We haven't generated a summary for this paper yet.