Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Dimensional Phase Retrieval: Regularization, Box Relaxation and Uniqueness (1904.10157v2)

Published 23 Apr 2019 in cs.IT and math.IT

Abstract: Recovering a signal from its Fourier magnitude is referred to as phase retrieval, which occurs in different fields of engineering and applied physics. This paper gives a new characterization of the phase retrieval problem. Particularly useful is the analysis revealing that the common gradient-based regularization does not restrict the set of solutions to a smaller set. Specifically focusing on binary signals, we show that a box relaxation is equivalent to the binary constraint for Fourier-types of phase retrieval. We further prove that binary signals can be recovered uniquely up to trivial ambiguities under certain conditions. Finally, we use the characterization theorem to develop an efficient denoising algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.