Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-Order Topological Insulators in Quasicrystals (1904.09932v4)

Published 22 Apr 2019 in cond-mat.mes-hall and cond-mat.dis-nn

Abstract: Current understanding of higher-order topological insulators (HOTIs) is based primarily on crystalline materials. Here, we propose that HOTIs can be realized in quasicrystals. Specifically, we show that two distinct types of second-order topological insulators (SOTIs) can be constructed on the quasicrystalline lattices (QLs) with different tiling patterns. One is derived by using a Wilson mass term to gap out the edge states of the quantum spin Hall insulator on QLs. The other is the quasicrystalline quadrupole insulator (QI) with a quantized quadrupole moment. We reveal some unusual features of the corner states (CSs) in the quasicrystalline SOTIs. We also show that the quasicrystalline QI can be simulated by a designed electrical circuit, where the CSs can be identified by measuring the impedance resonance peak. Our findings not only extend the concept of HOTIs into quasicrystals but also provide a feasible way to detect the topological property of quasicrystals in experiments.

Summary

We haven't generated a summary for this paper yet.