Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Exploration and Exploitation (1904.09605v2)

Published 21 Apr 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Sparse reward is one of the biggest challenges in reinforcement learning (RL). In this paper, we propose a novel method called Generative Exploration and Exploitation (GENE) to overcome sparse reward. GENE automatically generates start states to encourage the agent to explore the environment and to exploit received reward signals. GENE can adaptively tradeoff between exploration and exploitation according to the varying distributions of states experienced by the agent as the learning progresses. GENE relies on no prior knowledge about the environment and can be combined with any RL algorithm, no matter on-policy or off-policy, single-agent or multi-agent. Empirically, we demonstrate that GENE significantly outperforms existing methods in three tasks with only binary rewards, including Maze, Maze Ant, and Cooperative Navigation. Ablation studies verify the emergence of progressive exploration and automatic reversing.

Citations (6)

Summary

We haven't generated a summary for this paper yet.