Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When is a Prediction Knowledge? (1904.09024v1)

Published 18 Apr 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Within Reinforcement Learning, there is a growing collection of research which aims to express all of an agent's knowledge of the world through predictions about sensation, behaviour, and time. This work can be seen not only as a collection of architectural proposals, but also as the beginnings of a theory of machine knowledge in reinforcement learning. Recent work has expanded what can be expressed using predictions, and developed applications which use predictions to inform decision-making on a variety of synthetic and real-world problems. While promising, we here suggest that the notion of predictions as knowledge in reinforcement learning is as yet underdeveloped: some work explicitly refers to predictions as knowledge, what the requirements are for considering a prediction to be knowledge have yet to be well explored. This specification of the necessary and sufficient conditions of knowledge is important; even if claims about the nature of knowledge are left implicit in technical proposals, the underlying assumptions of such claims have consequences for the systems we design. These consequences manifest in both the way we choose to structure predictive knowledge architectures, and how we evaluate them. In this paper, we take a first step to formalizing predictive knowledge by discussing the relationship of predictive knowledge learning methods to existing theories of knowledge in epistemology. Specifically, we explore the relationships between Generalized Value Functions and epistemic notions of Justification and Truth.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alex Kearney (8 papers)
  2. Patrick M. Pilarski (35 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.