Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class specific or shared? A cascaded dictionary learning framework for image classification (1904.08928v2)

Published 17 Apr 2019 in cs.CV

Abstract: Dictionary learning methods can be split into: i) class specific dictionary learning ii) class shared dictionary learning. The difference between the two categories is how to use discriminative information. With the first category, samples of different classes are mapped into different subspaces, which leads to some redundancy with the class specific base vectors. While for the second category, the samples in each specific class can not be described accurately. In this paper, we first propose a novel class shared dictionary learning method named label embedded dictionary learning (LEDL). It is the improvement based on LCKSVD, which is easier to find out the optimal solution. Then we propose a novel framework named cascaded dictionary learning framework (CDLF) to combine the specific dictionary learning with shared dictionary learning to describe the feature to boost the performance of classification sufficiently. Extensive experimental results on six benchmark datasets illustrate that our methods are capable of achieving superior performance compared to several state-of-art classification algorithms.

Summary

We haven't generated a summary for this paper yet.