Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No-Reference Quality Assessment of Contrast-Distorted Images using Contrast Enhancement (1904.08879v1)

Published 18 Apr 2019 in cs.CV

Abstract: No-reference image quality assessment (NR-IQA) aims to measure the image quality without reference image. However, contrast distortion has been overlooked in the current research of NR-IQA. In this paper, we propose a very simple but effective metric for predicting quality of contrast-altered images based on the fact that a high-contrast image is often more similar to its contrast enhanced image. Specifically, we first generate an enhanced image through histogram equalization. We then calculate the similarity of the original image and the enhanced one by using structural-similarity index (SSIM) as the first feature. Further, we calculate the histogram based entropy and cross entropy between the original image and the enhanced one respectively, to gain a sum of 4 features. Finally, we learn a regression module to fuse the aforementioned 5 features for inferring the quality score. Experiments on four publicly available databases validate the superiority and efficiency of the proposed technique.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jia Yan (14 papers)
  2. Jie Li (553 papers)
  3. Xin Fu (49 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.