Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coupled Learning for Facial Deblur (1904.08671v1)

Published 18 Apr 2019 in cs.CV

Abstract: Blur in facial images significantly impedes the efficiency of recognition approaches. However, most existing blind deconvolution methods cannot generate satisfactory results due to their dependence on strong edges, which are sufficient in natural images but not in facial images. In this paper, we represent point spread functions (PSFs) by the linear combination of a set of pre-defined orthogonal PSFs, and similarly, an estimated intrinsic (EI) sharp face image is represented by the linear combination of a set of pre-defined orthogonal face images. In doing so, PSF and EI estimation is simplified to discovering two sets of linear combination coefficients, which are simultaneously found by our proposed coupled learning algorithm. To make our method robust to different types of blurry face images, we generate several candidate PSFs and EIs for a test image, and then, a non-blind deconvolution method is adopted to generate more EIs by those candidate PSFs. Finally, we deploy a blind image quality assessment metric to automatically select the optimal EI. Thorough experiments on the facial recognition technology database, extended Yale face database B, CMU pose, illumination, and expression (PIE) database, and face recognition grand challenge database version 2.0 demonstrate that the proposed approach effectively restores intrinsic sharp face images and, consequently, improves the performance of face recognition.

Citations (25)

Summary

We haven't generated a summary for this paper yet.