Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Sample Tradeoffs for Linear Regression with Small Error (1904.08544v2)

Published 18 Apr 2019 in cs.LG and stat.ML

Abstract: We consider the problem of performing linear regression over a stream of $d$-dimensional examples, and show that any algorithm that uses a subquadratic amount of memory exhibits a slower rate of convergence than can be achieved without memory constraints. Specifically, consider a sequence of labeled examples $(a_1,b_1), (a_2,b_2)\ldots,$ with $a_i$ drawn independently from a $d$-dimensional isotropic Gaussian, and where $b_i = \langle a_i, x\rangle + \eta_i,$ for a fixed $x \in \mathbb{R}d$ with $|x|_2 = 1$ and with independent noise $\eta_i$ drawn uniformly from the interval $[-2{-d/5},2{-d/5}].$ We show that any algorithm with at most $d2/4$ bits of memory requires at least $\Omega(d \log \log \frac{1}{\epsilon})$ samples to approximate $x$ to $\ell_2$ error $\epsilon$ with probability of success at least $2/3$, for $\epsilon$ sufficiently small as a function of $d$. In contrast, for such $\epsilon$, $x$ can be recovered to error $\epsilon$ with probability $1-o(1)$ with memory $O\left(d2 \log(1/\epsilon)\right)$ using $d$ examples. This represents the first nontrivial lower bounds for regression with super-linear memory, and may open the door for strong memory/sample tradeoffs for continuous optimization.

Citations (35)

Summary

We haven't generated a summary for this paper yet.