Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ZK-GanDef: A GAN based Zero Knowledge Adversarial Training Defense for Neural Networks (1904.08516v1)

Published 17 Apr 2019 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Neural Network classifiers have been used successfully in a wide range of applications. However, their underlying assumption of attack free environment has been defied by adversarial examples. Researchers tried to develop defenses; however, existing approaches are still far from providing effective solutions to this evolving problem. In this paper, we design a generative adversarial net (GAN) based zero knowledge adversarial training defense, dubbed ZK-GanDef, which does not consume adversarial examples during training. Therefore, ZK-GanDef is not only efficient in training but also adaptive to new adversarial examples. This advantage comes at the cost of small degradation in test accuracy compared to full knowledge approaches. Our experiments show that ZK-GanDef enhances test accuracy on adversarial examples by up-to 49.17% compared to zero knowledge approaches. More importantly, its test accuracy is close to that of the state-of-the-art full knowledge approaches (maximum degradation of 8.46%), while taking much less training time.

Citations (17)

Summary

We haven't generated a summary for this paper yet.