Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Resizing by Reconstruction from Deep Features (1904.08475v2)

Published 17 Apr 2019 in cs.CV

Abstract: Traditional image resizing methods usually work in pixel space and use various saliency measures. The challenge is to adjust the image shape while trying to preserve important content. In this paper we perform image resizing in feature space where the deep layers of a neural network contain rich important semantic information. We directly adjust the image feature maps, extracted from a pre-trained classification network, and reconstruct the resized image using a neural-network based optimization. This novel approach leverages the hierarchical encoding of the network, and in particular, the high-level discriminative power of its deeper layers, that recognizes semantic objects and regions and allows maintaining their aspect ratio. Our use of reconstruction from deep features diminishes the artifacts introduced by image-space resizing operators. We evaluate our method on benchmarks, compare to alternative approaches, and demonstrate its strength on challenging images.

Citations (29)

Summary

We haven't generated a summary for this paper yet.