Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Headline Generation: Learning from Decomposable Document Titles (1904.08455v3)

Published 17 Apr 2019 in cs.CL

Abstract: We propose a novel method for generating titles for unstructured text documents. We reframe the problem as a sequential question-answering task. A deep neural network is trained on document-title pairs with decomposable titles, meaning that the vocabulary of the title is a subset of the vocabulary of the document. To train the model we use a corpus of millions of publicly available document-title pairs: news articles and headlines. We present the results of a randomized double-blind trial in which subjects were unaware of which titles were human or machine-generated. When trained on approximately 1.5 million news articles, the model generates headlines that humans judge to be as good or better than the original human-written headlines in the majority of cases.

Citations (9)

Summary

We haven't generated a summary for this paper yet.