Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An alternative view on the Bateman-Luke variational principle (1904.08174v4)

Published 17 Apr 2019 in physics.flu-dyn

Abstract: A new derivation of the Bernoulli equation for water waves in three-dimensional rotating and translating coordinate systems is given. An alternative view on the Bateman-Luke variational principle is presented. The variational principle recovers the boundary value problem governing the motion of potential water waves in a container undergoing prescribed rigid-body motion in three dimensions. A mathematical theory is presented for the problem of three-dimensional interactions between potential surface waves and a floating structure with interior potential fluid sloshing. The complete set of equations of motion for the exterior gravity-driven water waves, and the exact nonlinear hydrodynamic equations of motion for the linear momentum and angular momentum of the floating structure containing fluid, are derived from a second variational principle.

Summary

We haven't generated a summary for this paper yet.