Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Verification of Probabilistic Networks (1904.08096v1)

Published 17 Apr 2019 in cs.PL

Abstract: This paper presents McNetKAT, a scalable tool for verifying probabilistic network programs. McNetKAT is based on a new semantics for the guarded and history-free fragment of Probabilistic NetKAT in terms of finite-state, absorbing Markov chains. This view allows the semantics of all programs to be computed exactly, enabling construction of an automatic verification tool. Domain-specific optimizations and a parallelizing backend enable McNetKAT to analyze networks with thousands of nodes, automatically reasoning about general properties such as probabilistic program equivalence and refinement, as well as networking properties such as resilience to failures. We evaluate McNetKAT's scalability using real-world topologies, compare its performance against state-of-the-art tools, and develop an extended case study on a recently proposed data center network design.

Citations (25)

Summary

We haven't generated a summary for this paper yet.