Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the fractional operators with respect to another function (1904.07922v2)

Published 16 Apr 2019 in math.NA, cs.NA, and math.CA

Abstract: This paper is in concern with Cauchy problems involving the fractional derivatives with respect to another function. Results of existence, uniqueness, and Taylor series among others are established in appropriate functional spaces. We prove that these results are valid at once for several standard fractional operators such as the Riemann-Liouville and Caputo operators, the Hadamard operators, the Erd\'elyi-Kober operators, etc., depending on the choice of the scaling function. We also show that our technique can be useful to solve a wide range of Volterra integral equations. The numerical approximation of solutions of systems involving the fractional derivatives with respect to another function is also investigated and the optimal convergence rate of the schemes is reached in graded meshes, even in the case of singular solutions. Various examples and numerical tests, with an application to the Erd\'elyi-Kober operators, are performed at the end to illustrate the efficiency of the proposed approach.

Summary

We haven't generated a summary for this paper yet.