Separation of bounded arithmetic using a consistency statement (1904.06782v2)
Abstract: This paper proves Buss's hierarchy of bounded arithmetics $S1_2 \subseteq S2_2 \subseteq \cdots \subseteq Si_2 \subseteq \cdots$ does not entirely collapse. More precisely, we prove that, for a certain $D$, $S1_2 \subsetneq S{2D+5}_2$ holds. Further, we can allow any finite set of true quantifier free formulas for the BASIC axioms of $S1_2, S2_2, \ldots$. By Takeuti's argument, this implies $\mathrm{P} \neq \mathrm{NP}$. Let $\mathbf{Ax}$ be a certain formulation of BASIC axioms. We prove that $S1_2 \not\vdash \mathrm{Con}(\mathrm{PV}-_1(D) + \mathbf{Ax})$ for sufficiently large $D$, while $S{2D+7}_2 \vdash \mathrm{Con}(\mathrm{PV}-_1(D) + \mathbf{Ax})$ for a system $\mathrm{PV}-_1(D)$, a fragment of the system $\mathrm{PV}-_1$, induction free first order extension of Cook's $\mathrm{PV}$, of which proofs contain only formulas with less than $D$ connectives. $S1_2 \not\vdash \mathrm{Con}(\mathrm{PV}-_1(D) + \mathbf{Ax})$ is proved by straightforward adaption of the proof of $\mathrm{PV} \not\vdash \mathrm{Con}(\mathrm{PV}-)$ by Buss and Ignjatovi\'c. $S{2D+5}_2 \vdash \mathrm{Con}(\mathrm{PV}-_1(D) + \mathbf{Ax})$ is proved by $S{2D+7}_2 \vdash \mathrm{Con}(\mathrm{PV}-_q(D+2) + \mathbf{Ax})$, where $\mathrm{PV}-_q$ is a quantifier-only extension of $\mathrm{PV}-$. The later statement is proved by an extension of a technique used for Yamagata's proof of $S2_2 \vdash \mathrm{Con}(\mathrm{PV}-)$, in which a kind of satisfaction relation $\mathrm{Sat}$ is defined. By extending $\mathrm{Sat}$ to formulas with less than $D$-quantifiers, $S{2D+3}_2 \vdash \mathrm{Con}(\mathrm{PV}-_q(D) + \mathbf{Ax})$ is obtained in a straightforward way.