Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beam Profiler Network (BPNet) -- A Deep Learning Approach to Mode Demultiplexing of Laguerre-Gaussian Optical Beams (1904.06735v1)

Published 14 Apr 2019 in eess.IV and physics.optics

Abstract: The transverse field profile of light is being recognized as a resource for classical and quantum communications for which reliable methods of sorting or demultiplexing spatial optical modes are required. Here, we demonstrate, experimentally, state-of-the-art mode demultiplexing of Laguerre-Gaussian beams according to both their orbital angular momentum and radial topological numbers using a flow of two concatenated deep neural networks. The first network serves as a transfer function from experimentally-generated to ideal numerically-generated data, while using a unique "Histogram Weighted Loss" function that solves the problem of images with limited significant information. The second network acts as a spatial-modes classifier. Our method uses only the intensity profile of modes or their superposition, making the phase information redundant.

Citations (10)

Summary

We haven't generated a summary for this paper yet.