Exact sequences in the cohomology of a Lie superalgebra extension (1904.06650v2)
Abstract: Let $ 0\rightarrow \mathfrak{a} \rightarrow \mathfrak{e} \rightarrow \mathfrak{g} \rightarrow 0$ be an abelian extension of the Lie superalgebra $\mathfrak{g}$. In this article we consider the problems of extending endomorphisms of $\mathfrak{a}$ and lifting endomorphisms of $\mathfrak{g}$ to certain endomorphisms of $\mathfrak{e}$. We connect these problems to the cohomology of $\mathfrak{g}$ with coefficients in $\mathfrak{a}$ through construction of two exact sequences, which is our main result, involving various endomorphism groups and the second cohomology. The first exact sequence is obtained using the Hochschild-Serre spectral sequence corresponding to the above extension while to prove the second we rather take a direct approach. As an application of our results we obtain descriptions of certain automorphism groups of semidirect product Lie superalgebras.