Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L1-norm Tucker Tensor Decomposition (1904.06455v1)

Published 13 Apr 2019 in cs.NA, cs.DS, and eess.SP

Abstract: Tucker decomposition is a common method for the analysis of multi-way/tensor data. Standard Tucker has been shown to be sensitive against heavy corruptions, due to its L2-norm-based formulation which places squared emphasis to peripheral entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of standard Tucker decomposition. After formulating the problem, we present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The presented algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker, implemented by means of the proposed methods, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries.

Citations (30)

Summary

We haven't generated a summary for this paper yet.