Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved training of binary networks for human pose estimation and image recognition (1904.05868v1)

Published 11 Apr 2019 in cs.CV

Abstract: Big neural networks trained on large datasets have advanced the state-of-the-art for a large variety of challenging problems, improving performance by a large margin. However, under low memory and limited computational power constraints, the accuracy on the same problems drops considerable. In this paper, we propose a series of techniques that significantly improve the accuracy of binarized neural networks (i.e networks where both the features and the weights are binary). We evaluate the proposed improvements on two diverse tasks: fine-grained recognition (human pose estimation) and large-scale image recognition (ImageNet classification). Specifically, we introduce a series of novel methodological changes including: (a) more appropriate activation functions, (b) reverse-order initialization, (c) progressive quantization, and (d) network stacking and show that these additions improve existing state-of-the-art network binarization techniques, significantly. Additionally, for the first time, we also investigate the extent to which network binarization and knowledge distillation can be combined. When tested on the challenging MPII dataset, our method shows a performance improvement of more than 4% in absolute terms. Finally, we further validate our findings by applying the proposed techniques for large-scale object recognition on the Imagenet dataset, on which we report a reduction of error rate by 4%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Adrian Bulat (47 papers)
  2. Georgios Tzimiropoulos (86 papers)
  3. Jean Kossaifi (45 papers)
  4. Maja Pantic (100 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.