Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A machine learning approach for underwater gas leakage detection (1904.05661v1)

Published 11 Apr 2019 in stat.ML and cs.LG

Abstract: Underwater gas reservoirs are used in many situations. In particular, Carbon Capture and Storage (CCS) facilities that are currently being developed intend to store greenhouse gases inside geological formations in the deep sea. In these formations, however, the gas might percolate, leaking back to the water and eventually to the atmosphere. The early detection of such leaks is therefore tantamount to any underwater CCS project. In this work, we propose to use Passive Acoustic Monitoring (PAM) and a machine learning approach to design efficient detectors that can signal the presence of a leakage. We use data obtained from simulation experiments off the Brazilian shore, and show that the detection based on classification algorithms achieve good performance. We also propose a smoothing strategy based on Hidden Markov Models in order to incorporate previous knowledge about the probabilities of leakage occurrences.

Citations (2)

Summary

We haven't generated a summary for this paper yet.