Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic LBFGS Algorithm for Radio Interferometric Calibration (1904.05619v2)

Published 11 Apr 2019 in astro-ph.IM, cs.LG, and math.OC

Abstract: We present a stochastic, limited-memory Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm that is suitable for handling very large amounts of data. A direct application of this algorithm is radio interferometric calibration of raw data at fine time and frequency resolution. Almost all existing radio interferometric calibration algorithms assume that it is possible to fit the dataset being calibrated into memory. Therefore, the raw data is averaged in time and frequency to reduce its size by many orders of magnitude before calibration is performed. However, this averaging is detrimental for the detection of some signals of interest that have narrow bandwidth and time duration such as fast radio bursts (FRBs). Using the proposed algorithm, it is possible to calibrate data at such a fine resolution that they cannot be entirely loaded into memory, thus preserving such signals. As an additional demonstration, we use the proposed algorithm for training deep neural networks and compare the performance against the mainstream first order optimization algorithms that are used in deep learning.

Citations (6)

Summary

We haven't generated a summary for this paper yet.