Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speech Enhancement with Wide Residual Networks in Reverberant Environments (1904.05167v1)

Published 9 Apr 2019 in eess.AS and cs.SD

Abstract: This paper proposes a speech enhancement method which exploits the high potential of residual connections in a Wide Residual Network architecture. This is supported on single dimensional convolutions computed alongside the time domain, which is a powerful approach to process contextually correlated representations through the temporal domain, such as speech feature sequences. We find the residual mechanism extremely useful for the enhancement task since the signal always has a linear shortcut and the non-linear path enhances it in several steps by adding or subtracting corrections. The enhancement capability of the proposal is assessed by objective quality metrics evaluated with simulated and real samples of reverberated speech signals. Results show that the proposal outperforms the state-of-the-art method called WPE, which is known to effectively reduce reverberation and greatly enhance the signal. The proposed model, trained with artificial synthesized reverberation data, was able to generalize to real room impulse responses for a variety of conditions (e.g. different room sizes, $RT_{60}$, near & far field). Furthermore, it achieves accuracy for real speech with reverberation from two different datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.