Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A uniqueness result for 3D incompressible fluid-rigid body interaction problem (1904.05102v5)

Published 10 Apr 2019 in math.AP

Abstract: We study a 3D nonlinear moving boundary fluid-structure interaction problem describing the interaction of the fluid flow with a rigid body. The fluid flow is governed by 3D incompressible Navier-Stokes equations, while the motion of the rigid body is described by a system of ordinary differential equations called Euler equations for the rigid body. The equations are fully coupled via dynamical and kinematic coupling conditions. We consider two different kinds of kinematic coupling conditions: no-slip and slip. In both cases we prove a generalization of the well-known weak-strong uniqueness result for the Navier-Stokes equations to the fluid-rigid body system. More precisely, we prove that weak solutions that additionally satisfy Prodi-Serrin $Lr-Ls$ condition are unique in the class of Leray-Hopf weak solutions.

Summary

We haven't generated a summary for this paper yet.