Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density results for specialization sets of Galois covers (1904.05051v2)

Published 10 Apr 2019 in math.NT

Abstract: We provide evidence for this conclusion: given a finite Galois cover $f: X \rightarrow \mathbb{P}1_\mathbb{Q}$ of group $G$, almost all (in a density sense) realizations of $G$ over $\mathbb{Q}$ do not occur as specializations of $f$. We show that this holds if the number of branch points of $f$ is sufficiently large, under the abc-conjecture and, possibly, the lower bound predicted by the Malle conjecture for the number of Galois extensions of $\mathbb{Q}$ of given group and bounded discriminant. This widely extends a result of Granville on the lack of $\mathbb{Q}$-rational points on quadratic twists of hyperelliptic curves over $\mathbb{Q}$ with large genus, under the abc-conjecture (a diophantine reformulation of the case $G=\mathbb{Z}/2\mathbb{Z}$ of our result). As a further evidence, we exhibit a few finite groups $G$ for which the above conclusion holds unconditionally for almost all covers of $\mathbb{P}1_\mathbb{Q}$ of group $G$. We also introduce a local-global principle for specializations of Galois covers $f: X \rightarrow \mathbb{P}1_\mathbb{Q}$ and show that it often fails if $f$ has abelian Galois group and sufficiently many branch points, under the abc-conjecture. On the one hand, such a local-global conclusion underscores the "smallness" of the specialization set of a Galois cover of $\mathbb{P}1_\mathbb{Q}$. On the other hand, it allows to generate conditionally "many" curves over $\mathbb{Q}$ failing the Hasse principle, thus generalizing a recent result of Clark and Watson devoted to the hyperelliptic case.

Summary

We haven't generated a summary for this paper yet.