Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inversion of multiconfiguration complex EMI data with minimum gradient support regularization: A case study (1904.04563v6)

Published 9 Apr 2019 in math.NA and cs.NA

Abstract: Frequency-domain electromagnetic instruments allow the collection of data in different configurations, that is, varying the intercoil spacing, the frequency, and the height above the ground. Their handy size makes these tools very practical for near-surface characterization in many fields of applications, for example, precision agriculture, pollution assessments, and shallow geological investigations. To this end, the inversion of either the real (in-phase) or the imaginary (quadrature) component of the signal has already been studied. Furthermore, in many situations, a regularization scheme retrieving smooth solutions is blindly applied, without taking into account the prior available knowledge. The present work discusses an algorithm for the inversion of the complex signal in its entirety, as well as a regularization method that promotes the sparsity of the reconstructed electrical conductivity distribution. This regularization strategy incorporates a minimum gradient support stabilizer into a truncated generalized singular value decomposition scheme. The results of the implementation of this sparsity-enhancing regularization at each step of a damped Gauss-Newton inversion algorithm (based on a nonlinear forward model) are compared with the solutions obtained via a standard smooth stabilizer. An approach for estimating the depth of investigation, that is, the maximum depth that can be investigated by a chosen instrument configuration in a particular experimental setting is also discussed. The effectiveness and limitations of the whole inversion algorithm are demonstrated on synthetic and real data sets.

Citations (16)

Summary

We haven't generated a summary for this paper yet.