Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WDVV-Type Relations for Disk Gromov-Witten Invariants in Dimension 6 (1904.04254v2)

Published 8 Apr 2019 in math.SG, hep-th, and math.AG

Abstract: The first author's previous work established Solomon's WDVV-type relations for Welschinger's invariant curve counts in real symplectic fourfolds by lifting geometric relations over possibly unorientable morphisms. We apply her framework to obtain WDVV-style relations for the disk invariants of real symplectic sixfolds with some symmetry, in particular confirming Alcolado's prediction for $\mathbb{P}3$ and extending it to other spaces. These relations reduce the computation of Welschinger's invariants of many real symplectic sixfolds to invariants in small degrees and provide lower bounds for counts of real rational curves with positive-dimensional insertions in some cases. In the case of $\mathbb{P}3$, our lower bounds fit perfectly with Koll\'ar's vanishing results.

Summary

We haven't generated a summary for this paper yet.