Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling Air Pollution Crises Using Multi-agent Simulation (1904.04018v1)

Published 8 Apr 2019 in stat.AP and cs.MA

Abstract: This paper describes an agent based approach for simulating the control of an air pollution crisis. A Gaussian Plum air pollution dispersion model (GPD) is combined with an Artificial Neural Network (ANN) to predict the concentration levels of three different air pollutants. The two models (GPM and ANN) are integrated with a MAS (multi-agent system). The MAS models pollutant sources controllers and air pollution monitoring agencies as software agents. The population of agents cooperates with each other in order to reduce their emissions and control the air pollution. Leaks or natural sources of pollution are modelled as uncontrolled sources. A cooperation strategy is simulated and its impact on air pollution evolution is assessed and compared. The simulation scenario is built using data about Annaba (a city in NorthEast Algeria). The simulation helps to compare and assess the efficiency of policies to control air pollution during crises, and takes in to account uncontrolled sources.

Citations (9)

Summary

We haven't generated a summary for this paper yet.