Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kervolutional Neural Networks (1904.03955v2)

Published 8 Apr 2019 in cs.CV

Abstract: Convolutional neural networks (CNNs) have enabled the state-of-the-art performance in many computer vision tasks. However, little effort has been devoted to establishing convolution in non-linear space. Existing works mainly leverage on the activation layers, which can only provide point-wise non-linearity. To solve this problem, a new operation, kervolution (kernel convolution), is introduced to approximate complex behaviors of human perception systems leveraging on the kernel trick. It generalizes convolution, enhances the model capacity, and captures higher order interactions of features, via patch-wise kernel functions, but without introducing additional parameters. Extensive experiments show that kervolutional neural networks (KNN) achieve higher accuracy and faster convergence than baseline CNN.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com