Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sim-Real Joint Reinforcement Transfer for 3D Indoor Navigation (1904.03895v2)

Published 8 Apr 2019 in cs.CV

Abstract: There has been an increasing interest in 3D indoor navigation, where a robot in an environment moves to a target according to an instruction. To deploy a robot for navigation in the physical world, lots of training data is required to learn an effective policy. It is quite labour intensive to obtain sufficient real environment data for training robots while synthetic data is much easier to construct by rendering. Though it is promising to utilize the synthetic environments to facilitate navigation training in the real world, real environment are heterogeneous from synthetic environment in two aspects. First, the visual representation of the two environments have significant variances. Second, the houseplans of these two environments are quite different. Therefore two types of information, i.e. visual representation and policy behavior, need to be adapted in the reinforcement model. The learning procedure of visual representation and that of policy behavior are presumably reciprocal. We propose to jointly adapt visual representation and policy behavior to leverage the mutual impacts of environment and policy. Specifically, our method employs an adversarial feature adaptation model for visual representation transfer and a policy mimic strategy for policy behavior imitation. Experiment shows that our method outperforms the baseline by 19.47% without any additional human annotations.

Citations (25)

Summary

We haven't generated a summary for this paper yet.