Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Bottleneck and its Applications in Deep Learning (1904.03743v1)

Published 7 Apr 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Information Theory (IT) has been used in Machine Learning (ML) from early days of this field. In the last decade, advances in Deep Neural Networks (DNNs) have led to surprising improvements in many applications of ML. The result has been a paradigm shift in the community toward revisiting previous ideas and applications in this new framework. Ideas from IT are no exception. One of the ideas which is being revisited by many researchers in this new era, is Information Bottleneck (IB); a formulation of information extraction based on IT. The IB is promising in both analyzing and improving DNNs. The goal of this survey is to review the IB concept and demonstrate its applications in deep learning. The information theoretic nature of IB, makes it also a good candidate in showing the more general concept of how IT can be used in ML. Two important concepts are highlighted in this narrative on the subject, i) the concise and universal view that IT provides on seemingly unrelated methods of ML, demonstrated by explaining how IB relates to minimal sufficient statistics, stochastic gradient descent, and variational auto-encoders, and ii) the common technical mistakes and problems caused by applying ideas from IT, which is discussed by a careful study of some recent methods suffering from them.

Citations (19)

Summary

We haven't generated a summary for this paper yet.