Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Universal Testing of Dynamic Network Models (1904.03348v2)

Published 6 Apr 2019 in stat.ML, cs.LG, cs.SI, and math.PR

Abstract: Numerous networks in the real world change over time, in the sense that nodes and edges enter and leave the networks. Various dynamic random graph models have been proposed to explain the macroscopic properties of these systems and to provide a foundation for statistical inferences and predictions. It is of interest to have a rigorous way to determine how well these models match observed networks. We thus ask the following goodness of fit question: given a sequence of observations/snapshots of a growing random graph, along with a candidate model M, can we determine whether the snapshots came from M or from some arbitrary alternative model that is well-separated from M in some natural metric? We formulate this problem precisely and boil it down to goodness of fit testing for graph-valued, infinite-state Markov processes and exhibit and analyze a universal test based on non-stationary sampling for a natural class of models.

Summary

We haven't generated a summary for this paper yet.