Rigid equivalences of $5$-dimensional $2$-nondegenerate rigid real hypersurfaces $M^5 \subset \mathbb{C}^ 3$ of constant Levi rank $1$ (1904.02562v3)
Abstract: We study the local equivalence problem for real-analytic ($\mathcal{C}\omega$) hypersurfaces $M5 \subset \mathbb{C}3$ which, in coordinates $(z_1, z_2, w) \in \mathbb{C}3$ with $w = u+i\, v$, are rigid: [ u \,=\, F\big(z_1,z_2,\overline{z}1,\overline{z}_2\big), ] with $F$ independent of $v$. Specifically, we study the group ${\sf Hol}{\sf rigid}(M)$ of rigid local biholomorphic transformations of the form: [ \big(z_1,z_2,w\big) \longmapsto \Big( f_1(z_1,z_2), f_2(z_1,z_2), a\,w + g(z_1,z_2) \Big), ] where $a \in \mathbb{R} \backslash {0}$ and $\frac{D(f_1,f_2)}{D(z_1,z_2)} \neq 0$, which preserve rigidity of hypersurfaces. After performing a Cartan-type reduction to an appropriate ${e}$-structure, we find exactly two primary invariants $I_0$ and $V_0$, which we express explicitly in terms of the $5$-jet of the graphing function $F$ of $M$. The identical vanishing $0 \equiv I_0 \big( J5F \big) \equiv V_0 \big( J5F \big)$ then provides a necessary and sufficient condition for $M$ to be locally rigidly-biholomorphic to the known model hypersurface: [ M_{\sf LC} \colon \ \ \ \ \ u \,=\, \frac{z_1\,\overline{z}1 +\frac{1}{2}\,z_12\overline{z}_2 +\frac{1}{2}\,\overline{z}_12z_2}{ 1-z_2\overline{z}_2}. ] We establish that $\dim\, {\sf Hol}{\sf rigid} (M) \leq 7 = \dim\, {\sf Hol}{\sf rigid} \big( M{\sf LC} \big)$ always. If one of these two primary invariants $I_0 \not\equiv 0$ or $V_0 \not\equiv 0$ does not vanish identically, we show that this rigid equivalence problem between rigid hypersurfaces reduces to an equivalence problem for a certain $5$-dimensional ${e}$-structure on $M$.