Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the connectivity of the branch and real locus of ${\mathcal M}_{0,[n+1]}$ (1904.01982v2)

Published 3 Apr 2019 in math.AG

Abstract: If $n \geq 3$, then moduli space ${\mathcal M}{0,[n+1]}$, of isomorphisms classes of $(n+1)$-marked spheres, is a complex orbifold of dimension $n-2$. Its branch locus ${\mathcal B}{0,[n+1]}$ consists of the isomorphism classes of those $(n+1)$-marked spheres with non-trivial group of conformal automorphisms. We prove that ${\mathcal B}{0,[n+1]}$ is connected if either $n \geq 4$ is even or if $n \geq 6$ is divisible by $3$, and that it has exactly two connected components otherwise. The orbifold ${\mathcal M}{0,[n+1]}$ also admits a natural real structure, this being induced by the complex conjugation on the Riemann sphere. The locus ${\mathcal M}{0,[n+1]}({\mathbb R})$ of its fixed points, the real points, consists of the isomorphism classes of those marked spheres admitting an anticonformal automorphism. Inside this locus is the real locus ${\mathcal M}{0,[n+1]}{\mathbb R}$, consisting of those classes of marked spheres admitting an anticonformal involution. We prove that ${\mathcal M}_{0,[n+1]}{\mathbb R}$ is connected for $n \geq 5$ odd, and that it is disconnected for $n=2r$ with $r \geq 5$ is odd.

Summary

We haven't generated a summary for this paper yet.