Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusion rules for $\mathbb{Z}_{2}$-orbifolds of affine and parafermion vertex operator algebras (1904.01798v1)

Published 3 Apr 2019 in math.QA and math.RT

Abstract: This paper is about the orbifold theory of affine and parafermion vertex operator algebras. It is known that the parafermion vertex operator algebra $K(sl_2,k)$ associated to the integrable highest weight modules for the affine Kac-Moody algebra $A_1{(1)}$ is the building block of the general parafermion vertex operator $K(\mathfrak{g},k)$ for any finite dimensional simple Lie algebra $\mathfrak{g}$ and any positive integer $k$. We first classify the irreducible modules of $\mathbb{Z}{2}$-orbifold of the simple affine vertex operator algebra of type $A_1{(1)}$ and determine their fusion rules. Then we study the representations of the $\mathbb{Z}{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$, we give the quantum dimensions, and more technically, fusion rules for the $\mathbb{Z}_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$ are completely determined.

Summary

We haven't generated a summary for this paper yet.