Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bubbling of quasiregular maps (1904.00885v1)

Published 1 Apr 2019 in math.DG and math.CV

Abstract: We give a version of Gromov's compactess theorem for pseudoholomorphic curves in the case of quasiregular mappings between closed manifolds. More precisely we show that, given $K\ge 1$ and $D\ge 1$, any sequence $(f_n \colon M \to N)$ of $K$-quasiregular mappings of degree $D$ between closed Riemannian $d$-manifolds has a subsequence which converges to a $K$-quasiregular mapping $f\colon X\to N$ of degree $D$ on a nodal $d$-manifold $X$.

Summary

We haven't generated a summary for this paper yet.