Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Room Geometry Estimation from Room Impulse Responses using Convolutional Neural Networks (1904.00869v4)

Published 1 Apr 2019 in eess.AS

Abstract: We describe a new method to estimate the geometry of a room given room impulse responses. The method utilises convolutional neural networks to estimate the room geometry and uses the mean square error as the loss function. In contrast to existing methods, we do not require the position or distance of sources or receivers in the room. The method can be used with only a single room impulse response between one source and one receiver for room geometry estimation. The proposed estimation method can achieve an average of six centimetre accuracy. In addition, the proposed method is shown to be computationally efficient compared to state-of-the-art methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.