Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On superconvergence of Runge-Kutta convolution quadrature for the wave equation (1904.00847v2)

Published 1 Apr 2019 in math.NA and cs.NA

Abstract: The semidiscretization of a sound soft scattering problem modelled by the wave equation is analyzed. The spatial treatment is done by integral equation methods. Two temporal discretizations based on Runge-Kutta convolution quadrature are compared: one relies on the incoming wave as input data and the other one is based on its temporal derivative. The convergence rate of the latter is shown to be higher than previously established in the literature. Numerical results indicate sharpness of the analysis. The proof hinges on a novel estimate on the Dirichlet-to-Impedance map for certain Helmholtz problems. Namely, the frequency dependence can be lowered by one power of $\abs{s}$(up to a logarithmic term for polygonal domains) compared to the Dirichlet-to-Neumann map.

Citations (5)

Summary

We haven't generated a summary for this paper yet.