Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Value of Temporal Dynamics Information in Driving Scene Segmentation (1904.00758v1)

Published 21 Mar 2019 in cs.CV and cs.NE

Abstract: Semantic scene segmentation has primarily been addressed by forming representations of single images both with supervised and unsupervised methods. The problem of semantic segmentation in dynamic scenes has begun to recently receive attention with video object segmentation approaches. What is not known is how much extra information the temporal dynamics of the visual scene carries that is complimentary to the information available in the individual frames of the video. There is evidence that the human visual system can effectively perceive the scene from temporal dynamics information of the scene's changing visual characteristics without relying on the visual characteristics of individual snapshots themselves. Our work takes steps to explore whether machine perception can exhibit similar properties by combining appearance-based representations and temporal dynamics representations in a joint-learning problem that reveals the contribution of each toward successful dynamic scene segmentation. Additionally, we provide the MIT Driving Scene Segmentation dataset, which is a large-scale full driving scene segmentation dataset, densely annotated for every pixel and every one of 5,000 video frames. This dataset is intended to help further the exploration of the value of temporal dynamics information for semantic segmentation in video.

Citations (19)

Summary

We haven't generated a summary for this paper yet.