Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Decomposition based Adaptive Model Reduction for Power System Simulation (1904.00433v1)

Published 31 Mar 2019 in cs.SY and math.DS

Abstract: The letter proposes an adaptive model reduction approach based on tensor decomposition to speed up time-domain power system simulation. Taylor series expansion of a power system dynamic model is calculated around multiple equilibria corresponding to different load levels. The terms of Taylor expansion are converted to the tensor format and reduced into smaller-size matrices with the help of tensor decomposition. The approach adaptively changes the complexity of a power system model based on the size of a disturbance to maintain the compromise between high simulation speed and high accuracy of the reduced model. The proposed approach is compared with a traditional linear model reduction approach on the 140-bus 48-machine Northeast Power Coordinating Council system.

Citations (5)

Summary

We haven't generated a summary for this paper yet.