Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistency of Bayesian Inference for Multivariate Max-Stable Distributions (1904.00245v3)

Published 30 Mar 2019 in math.ST and stat.TH

Abstract: Predicting extreme events is important in many applications in risk analysis. The extreme-value theory suggests modelling extremes by max-stable distributions. The Bayesian approach provides a natural framework for statistical prediction. Although various Bayesian inferential procedures have been proposed in the literature of univariate extremes and some for multivariate extremes, the study of their asymptotic properties has been left largely untouched. In this paper we focus on a semiparatric Bayesian method for estimating max-stable distributions in arbitrary dimension. We establish consistency of the pertaining posterior distributions for fairly general, well-specified max-stable models, whose margins can be short-, light- or heavy-tailed. We then extend our consistency results to the case where the data come from a distribution lying in a neighbourhood of a max-stable one, which represents the most realistic inferential setting.

Summary

We haven't generated a summary for this paper yet.