Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Scale Time-Frequency Attention for Acoustic Event Detection (1904.00063v3)

Published 29 Mar 2019 in cs.SD and eess.AS

Abstract: Most attention-based methods only concentrate along the time axis, which is insufficient for Acoustic Event Detection (AED). Meanwhile, previous methods for AED rarely considered that target events possess distinct temporal and frequential scales. In this work, we propose a Multi-Scale Time-Frequency Attention (MTFA) module for AED. MTFA gathers information at multiple resolutions to generate a time-frequency attention mask which tells the model where to focus along both time and frequency axis. With MTFA, the model could capture the characteristics of target events with different scales. We demonstrate the proposed method on Task 2 of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 Challenge. Our method achieves competitive results on both development dataset and evaluation dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.