Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting complex user behavior from CDR based social networks (1903.12579v2)

Published 29 Mar 2019 in cs.SI and physics.soc-ph

Abstract: Call Detail Record (CDR) datasets provide enough information about personal interactions to support building and analyzing detailed empirical social networks. We take one such dataset and describe the various ways of using it to create a true social network in spite of the highly noisy data source. We use the resulting network to predict each individual's likelihood to default on payments for the network services, a complex behavior that involves a combination of social, economic, and legal considerations. We use a large number of features extracted from the network to build a model for predicting which users will default. By analyzing the relative contributions of features, we choose their best performing subsets ranging in size from small to medium. Features based on the number of close ties maintained by a user performed better than those derived from user's geographical location. The paper contributions include systematic impact analysis that the number of calls cutoff has on the properties of the network derived from CDR, and a methodology for building complex behavior models by creating very large sets of diverse features and systematically choosing those which perform best for the final model.

Citations (15)

Summary

We haven't generated a summary for this paper yet.